首页> 外文OA文献 >Determining the Phase and Amplitude Distortion of a Wavefront using a Plenoptic Sensor
【2h】

Determining the Phase and Amplitude Distortion of a Wavefront using a Plenoptic Sensor

机译:用a确定波前的相位和幅度畸变   全光传感器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have designed a plenoptic sensor to retrieve phase and amplitude changesresulting from a laser beam's propagation through atmospheric turbulence.Compared with the commonly restricted domain of (-pi, pi) in phasereconstruction by interferometers, the reconstructed phase obtained by theplenoptic sensors can be continuous up to a multiple of 2pi. When compared withconventional Shack-Hartmann sensors, ambiguities caused by interference or lowintensity, such as branch points and branch cuts, are less likely to happen andcan be adaptively avoided by our reconstruction algorithm. In the design of ourplenoptic sensor, we modified the fundamental structure of a light field camerainto a mini Keplerian telescope array by accurately cascading the back focalplane of its object lens with a microlens array's front focal plane andmatching the numerical aperture of both components. Unlike light field camerasdesigned for incoherent imaging purposes, our plenoptic sensor operates on thecomplex amplitude of the incident beam and distributes it into a matrix ofimages that are simpler and less subject to interference than a global image ofthe beam. Then, with the proposed reconstruction algorithms, the plenopticsensor is able to reconstruct the wavefront and a phase screen at anappropriate depth in the field that causes the equivalent distortion on thebeam. The reconstructed results can be used to guide adaptive optics systems indirecting beam propagation through atmospheric turbulence. In this paper wewill show the theoretical analysis and experimental results obtained with theplenoptic sensor and its reconstruction algorithms.
机译:我们设计了一种全光传感器来检索由于激光束通过大气湍流传播而产生的相位和幅度变化。与干涉仪在相位重建中通常受限制的(-pi,pi)区域相比,电晕传感器获得的重建相位可以连续向上到2pi的倍数。与传统的Shack-Hartmann传感器相比,由干扰或低强度引起的歧义(例如分支点和分支切口)不太可能发生,并且可以通过我们的重构算法自适应地避免。在我们的正视传感器的设计中,我们通过将其物镜的后焦平面与微透镜阵列的前焦平面精确级联,并使两个组件的数值孔径匹配,将光场相机的基本结构修改为微型Keplerian望远镜阵列。与专为非相干成像目的而设计的光场相机不同,我们的全光传感器在入射光束的复杂振幅上进行操作,并将其分布到图像矩阵中,该图像矩阵比光束的整体图像更简单,更少受到干扰。然后,借助提出的重建算法,全光传感器能够在适当的深度重建波前和相位屏,从而在光束上造成等效畸变。重建的结果可用于指导自适应光学系统,使光束通过大气湍流传播。在本文中,我们将展示利用电磁感应传感器及其重构算法获得的理论分析和实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号